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Abstract 

We study sequence extrapolation as an abstract learning 
problem. The task is to learn a stream-a semi-infinite 
sequence (SI, s2,. . . , s,, . . .) of values all of the same 
data type-from a finite initial segment (SI, SZ, . . . , sm). 
We assume that all elements of the stream are of the 
same type (e.g., integers, strings, etc.). In order to r e p  
resent the hypotheses, we define a language for streams 
called elementary stream descriptions and present an 
algorithm that learns in the limit elementary streams 
over an extensive family of data types. The complexity 
of the.algorithm depends on the type and on a stream 
property known as the delay. In general the complexity 
is exponential or worse, but for streams with bounded 
delay over freely generated types the algorithm runs in 
time polynomial in the size of the examples. Sample size 
analysis is difficult, but for streams of delay 2 over a p  
plicative pairs, we calculate exactly the sample size re- 
quired in the worst case to identify the stream uniquely. 
This bound helps explain why sequence extrapolation 
requires so few examples compared to statistical learn- 
ing. 

Introduction 

Learning from experience to predict sequences of dis- 
crete symbols is a fundamental class of learning prob- 
lems. Characteristic of such problems is that the order 
of the examples is an integral part of the learning prob- 
lem; hence concept-learning methods based on indepen- 
dent random sampling do not apply. In this paper we 
consider the problem of sequence extrapolation, where 
the task is to form a rule for computing the n’th value 
of the sequence, g!ven a finite number of its predeces- 
sors. As a motivating example, try to state a simple rule 
that accounts for the following sequence of strings and 
use it to predict the next string: *?, ! **??, ! ! * ! **???, 
! ! !*! !*!**?????, . . . . 
Extrapolation problems apply to many types of data: 
strings, integers, trees, alphabetic letter sequences, and 
so on. One finds that many of the same techniques 
for finding patterns apply regardless of the data type. 
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Another feature of extrapolation problems is how few 
examples seem to be required in order to determine the 
rule. For example, sequences governed by polynomial 
functions f(n) = ein’ are learnable after only 1 + 1  
values. This stands in contrast to the very large sample 
sizes required for statistical learning problems. 

The main result of this paper is an algorithm that 
extrapolates many sequences (including the example 
above) over a large class of data types. Easily under- 
stood and implemented, the algorithm improves the as- 
sortment of ad hoc techniques used heretofore. We have 
proved the correctness of the algorithm and studied its 
complexity. Our analysis also explains in general terms 
what properties determine the minimum number of ex- 
amples necessary to identify the rule. 

While not currently an active research area, sequence 
extrapolation has in the past been the subject of re- 
search for psychologists and computer scientists. Psy- 
chologists have examined in some detail the way hu- 
mans infer rules for Thurstone sepuencessequences of 
alphabetic letters (e.g., ‘ ‘ A  C B D C E.. . ’ ’) in which 
the alphabetic ordering provides the fundamental rela- 
tionship from which the rule is formed. Programs that 
implement models of human performance on this task 
have also been used to test cognitive theories (e.g., [6]). 

Over the years a number of programmers have tried to 
write powerful sequence extrapolation programs. For 
example, Pivar and Finkelstein [lo] described a Lisp 
program that extrapolates integer sequences based on 
the so-called method of differences. Marcel Feenstra 
(cited in [2]) later extended the method with some clever 
heuristics and was able to achieve an “I&” of about 160 
on a published test. Evidently the method of differ- 
ences is promising for extrapolating integer sequences 
but hard to extend to data types other than integers. 

Noteworthy work in artificial intelligence on sequence 
extrapolation includes the little known but interesting 
thesis by Persson [9] and the paper by Hedrick [5].  Pers- 
son’s approach was to seek a method for automatically 
constructing a new representateion in which the problem 
reduces to a known or easy case. Hedrick used semantic 
nets to chart relationships among objects in an effort, to 
find a method applicable to sequences of objects over 



several types. Dietterich and Michalski [3] described a 
program called SPARC/E to play the game Eleusis, in 
which the next element in a sequence is a set of object, 
not a unique object. Later this work was extended and 
generalized in [SI. 

A recurring theme in past research is that sequence- 
extrapolation algorithms should be type independent, 
with a type-dependent part reflecting differences among 
data structures. Our results are perhaps the first 
to capture this intuition formally: Using concepts 
from algebraic type theory, we have separated the 
type-independent and type-dependent aspects and con- 
structed an algorithm in which the type is a parameter. 
Extrapolation is not equally easy for all types, however, 
and our analysis shows that a fundamental property of 
types-whether or not they are freely generated-makes 
a big difference in the complexity of the algorithm. Also 
significant, however, is a property of the stream itself: 
the number of previous elements required to predict the 
next one. We call this the delay, and show that the 
complexity may be exponential in the delay. 

We want our extrapolation algorithm to apply to many 
data types. The types we define are universal algebras 
with some additional restrictions. For simplicity we con- 
sider only types of a single sort, but extension to the 
many-sorted case is straightforward. 

Let 3 be a finite set of symbols representing operations, 
where each symbol f E 3 is assigned a nonnegative 
integer (its arity), and the subset 30 of atoms (symbols 
of arity zero) is nonempty. The set E of expressions 
generated by 3 is the free algebra generated by 30 and 
closed under the formal operations 3. 

The operations of arity zero are called atoms or gener- 
ators. For example, i f f  is an operation of arity 2 and 
a and b are atoms, then a, b, and f(f(a, a), b) are a few 
of the expressions in E. 

A type D over 3 is a family of congruences, Le., equiv- 
alence classes on E compatible with the operations 3. 
Thus if di and ei are equivalent expressions (1 5 i 5 n) 
and f is an n-ary operation, then f (dl , . . . , d,)  is equiv- 
alent to f(e1, ..., en). 
Examples of familiar data types are: 

e Strings over the alphabet A = { a , b } ,  where the 
only operator (apart from constants a and b) is 
the associative binary function 0 concatenating 
two strings. The two expressions (a 0 b) 0 c and 
a 0 (b 0 c)  are equivalent strings since the string 
operation is associative. 

e Dotted pairs over the set A = {a, b} .  The operator 
(e) makes a pair out of two expressions. Typical 
expressions include a, b, (6 b ) ,  (a ( b  a)), etc. 

e Non-negative integers generated from {0,1} by the 
binary operators + (addition) and * (multiplica- 

tion). Both operators are associative and commu- 
tative. 

e Thurstone domain: The letters A ,  B ,  . . . , Z to- 
gether with the constructors successor and prede- 
cessor, e.g., successo4A) = B and predecessor(B) = 
A. 

Let k be the following partial ordering on the expres- 
sions E: the minimal elements are the generators, and 
if y = f(z1,. . ., 2,) for some operation f E 3, then 
y k zi for i 5 n. This ordering relation extends to 
the elements of the type D: if 2 and y are expressions 
and [z] and [y] denote their equivalence classes, then 
[y] k [z] whenever y k z. On D, k need not be a 
partial ordering. 

Definition 1 A type D is said to be constructive if k 
'on E extends to a partial ordering on D. 

Strings with concatenation generated by a finite alpha- 
bet, the non-negative integers with addition generated 
by 0 and 1, and the set of ordered trees (lists) gener- 
ated by a finite set of atoms under the action of the o p  
erations cons and append are all examples of construc- 
tive types. The non-negative integers with addition and 
multiplication are not a constructive type: 1 = 0+1 and 
0 = 1 x 0, so that 1 k 0 2 1. Neither is the Thurstone 
domain, since ordinarily we think of A as the successor of 
Z; but by pairing each letter with an index counting the 
number of "wraparounds"-e.g., successor(Z1) = Az, we 
can handle Thurstone sequences with contructive types. 

The domain of dotted pairs-probably the simplest non- 
trivial constructive type-plays a fundamental role in 
our model. Combinators and ordered binary trees are 
common applications of this data structure. 

A constructive type is said to be freely generated if each 
value can be constructed from the generators by ex- 
actly one sequence of operations. Pairs, for example, 
are freely generated, but strings and naturals are not: 
the string abc can be constructed (ab)c or a(bc), and 3 
can be constructed as (1 + 1) + 1 or 1 + (1  + 1). 

Finally, we assume that types are represented so as to 
be effectively distinguishable. For example, there ran 
be no confusion between the integer 123 and the st,ring 
"123". 

Streams 

A stream is a semi-infinitesequence ( S I ,  s ~ ,  . . .) of values, 
all of the same type. The first element s1 is callrtl the 
head, and the stream (sz, sg, . . .> is called the fa i l .  

The operations for a type D extend naturally to st reams 
of the same type-e.g., if S = (SI,. . .) and T = ( t l ,  . . .) 
are streams and f(,) is an operation, then f ( S ,  T) = 
( f ( s l , t l ) ,  . . .) is a stream. The constant streanis a = 
(a, a,. . .), where a is a generator, are stream oprrations 
of arity 0. 

In order to formalize sequence extrapolation as Iratn- 
ing a stream, we define a representation langriagr for 
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S = (a IT) 
T = [S’,U] 
S’ = s 
u =  a 

(4 
Figure 1: Example elementary descriptions. 

streams. In describing the language, we shall adopt the 
convention that uppercase letters (S, T, etc.) denote 
the names of streams, lowercase Roman letters without 
subscripts (a, b, etc.) denote atomic expressions, and 
Greek letters (a, p, etc.) denote arbitrary expressions. 
The i’th value of the stream A is denoted by ai,  and 
similarly for other stream symbols. 

Definition 2 An elementary description (of type D )  
of a stream S is a block-structured list of one or more 
equations. The block has one of the following forms: 

(initial-value form)  S = (a I T ) ,  where a is an 
atom of type D, and T is a stream name different 
from S. This equation is followed by an elementary 
description of T .  (Intuitively the atom a represents 
the head, and T the tail stream.) 

(functional form) S = f(T1,. . .,Tk), where f is 
an operation of arity k 2 0, and the symbols x 
are distinct stream names different from S. This 
equation is followed by elementary descriptions of 
TI ,  . . . , Tk. (Intuitively this represents the stream 
S as a function f of the streams Ti;..) 

(equality jorm) S = U ,  where U is the name of a 
stream in the parent hierarchy of S (see below). 
(This defines the stream S recursively in terms of 
another stream V . )  I 

In the initial-value form, S is said to be the parent 
stream of T; likewise in the function form S is the parent 
stream of each (1 5 i 5 k ) .  The parent hierarchy of a 
description T (or E, etc.) consists of S, the parent of S, 
its parent, and so on. A stream U named in an equality 
definition of S must belong to the parent hierarchy of 
S. 

As a simple example, the single equation S = a is an ele- 
mentary description. (Recall that atoms are functions of 
arity zero.) It denotes the constant stream (a, a, a, . . .). 
The description in Figure l(a) represents the stream 
S = (a, [a, a], [[a, a], a], . . .) of type pair. Over the nat- 
urals with addition, the description in Figure l(b) de- 
scribes the Fibonacci sequence, F = (1, l, 2,3 ,5 , .  . .). 
The language can be made more economical by allow- 
ing backward references to parent streams in the initial- 
value and functional forms. We can then eliminate 
one equation from the stream in Figure l(a). writing 
T = [S, U ] .  We formally adopt the more restricted form 
in order to simplify the reasoning about the language. 

On occasion, where formality is less of an issue than 
clarity, we may use such “improper” backreferences. 

Before we provide a semantics for elementary descrip 
tions, we must place additional restrictions on the lan- 
guage. Otherwise we may suffer circular descriptions 
such as S = f (T) ,  T = S.  

Definition 3 Let S be an elementary description for a 
stream, and let W be a stream name defined within the 
block S. The relative delay A(S, W )  of W relative to S 
is defined as follows: 

0 A(S,S) = 1; 

0 If S = (a I T ) ,  then A(S, W) = 1 + A(T, W). 

0 If S = f(T1,. . ., Tk) (k > 0) and W is defined 
within the block Z, then A(S, W) = A(Z, W). I 

Definition 4 Let S be an elementary description 
for a stream. The delay in the description S is 
max{A(S, W) I Wis defined within S). 

Definition 5 An elementary description for a stream 
S is called proper if for every equality form Si = U in 
the block, A(U, Si) > 1. 

Intuitively the delay is the number of previous values 
upon which each successive value depends, plus one. 
(The “plus one” is for technical reasons.) In the ex- 
ample in Figure l(a) above, the delay in S is 2. For the 
family of Fibonacci numbers defined in Figure l(b), the 
delay of F is 3 since A(F, If) = 3 is maximum over all 
the symbols defined in the block F. Both are proper 
descriptions. The description S = f ( T ) ,  T = S is not 
proper since A(S, T )  = 1. 

Proper elementary descriptions have a well-defined se- 
mantics that assigns as a model a stream [q to every 
stream symbol S: 

0 If S = (a I T ) ,  then s the stream whose head 
is a and whose tailst 

0 If S = f(T1,. ..,Tk), then [SI is the stream 

0 If S = U (an equality form), then [SI is [VI .  
f(BT11,. - * 1 BTkl). 

Theorem 6 A proper elementary description S has a 
unique model stream. If the description S is not proper, 
it may have one model, no models, or many modpis. 
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(The proof can be made by induction or with a fixpoint 
argument .) 

For example, in Figure l(a), 
[q = ( 0 1  ,..., t n , . . . )  
[q = (tl,... , t  n,...) 

[S'] = (si,. * .,s;, . . .) 
= I[sl 

[VI = (u1, ..., 21, ,...) 
= (a,a, ...) 

= ([si, u11,. . ., [sl,, 4,. . .) 

Over the non-negative integers the description X = Y + 
2, Y = X, 2 = 0 can be modeled by any stream X over 
the type. But if we change the description of 2 to 2 = 1, 
then X has no model over the type. 

Finally we call a stream S of elements of type D an ele- 
mentary stream of type D if there is a proper elementary 
description whose model is S.  ES denotes the class of all 
elementary streams. The delay of an elementary stream 
S is the least k such that S is representable by an el- 
ementary description with delay k. ES(k) denotes the 
family of elementary streams with delay k. 
Henceforth all streams under discussion will be pre- 
sumed to be elementary and all descriptions, proper. 

Summarizing, we have defined a limited family of data 
types, a language for describing streams over those 
types, and a semantics for the language. We shall 
model sequence extrapolation as the problem of learn- 
ing a stream description, g-iven an initial segment of the 
stream. The length of the initial segment is the samples 
size. 

How Many Examples Are Needed? 

Recall the stream S = (a ,  [a, a], [[a,a],a], . . .) of type 
pair used in example above. Suppose we are told that 
this stream is in ES(2).  How many descriptions of delay 
two or less are consistent with these first three valued? 
With a bit of reflection we can convince ourselves that 
the only consistent description is that given in Figure 
l(a) or one that is semantically equivalent. There is 
no stream St of delay two beginning with these three 
values that later differs from S on some other value. 
If, however, we remove the restriction that the delay 
is two, then many different descriptions beginning with 
these same three values can be given. 

Just as for statistical concept learning, the complexity 
of the learning problem for streams depends on both the 
minimum sample size and the search for a consistent de- 
scription. Unlike statistical concept learning, however, 
the minimum sample sizes seem to be much smaller. 
While working with sequence extrapolation, the authors 
have often been surprised by how few examples are re- 
quired to determine a stream description of smallest de- 
lay, regardless of type. Evidently the sequential ordering 

'We shall use the terms values and examples 
interchangeably. 

of the examples severely constrains the number of can- 
didate descriptions. For statistical concept learning, the 
combinatorial dimension [I, 41 of the hypothesis family 
characterizes quite well the way examples constrain the 
number of consistent concept descriptions. Finding an 
equally satisfying way to characterize these constraints 
for sequence learning presents a challenge for computa- 
tional learning theory. 

Definition 7 Let S be a class of elementary stream 
descriptions. We say that S is m-distinguishable if, for 
any two inequivalent stream descriptions A and B in S, 
there exists an i ,  1 5 i 5 m such that ai # bj. S is said 
to be exactly m-distinguishable if it is m-distinguishable 
but not (m - 1)-distinguishable. 

If the class S is m-distinguishable, then any algorithm A 
that finds an elementary description consistent with the 
first rn values of a stream can be turned into a learning 
algorithm for the class. The algorithm first obtains rn 
values and then calls A. 

We have found the task of calculating the minimum 
sample size to be difficult. For the special case of pair 
types, we have the following modest but interesting re- 
sult: 

Theorem 8 Over pairs let ES(2;  h )  be the family of 
elementary streams of delay at most two for which the 
first element has height h or less.2 The family ES(2;  h )  
is  exactly ( h  + 3)-distinguishable. 

A sketch of the proof is appended. 

Note that this is an exact bound on the worst-case sam- 
ple size. h + 3 examples suffice for all delay-2 streams, 
and for every h one can exhibit a stream whose first el- 
ement has height h and for which there are at  least t,wo 
descriptions consistent with the first h + 2 values. 

As a corollary, if one begins the extrapolation process 
with the n'th value of the stream instead of with the 
first, the required sample size is greater by a factor of 
only a polynomial in n. The reason is.that, whereas 
the sizes of successive elements can grow exponentially, 
their heights increase only linearly; and the theorem 
shows that the height is what determines the sample 
size. 

Based on our experiences, we conjecture that over pairs, 
the family ES(h; h )  of elementary streams with delay at 
most k is (1 + k + h)-distinguishable, where h is the 
height of sk-1. 

The Extrapolation Algorithm 

We present an algorithm that searches for elementary 
descriptions consistent with the examples seen so far. 

'Viewing pairs as binary trees, we say that an atom has 
height zero, and the pair   CY,^] has height h([a,/3]) = 1 + 
max(h(a), h(P)). 
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Our algorithm keeps many active hypotheses for the in- 
put stream and eliminates hypotheses as soon as they 
conflict with the input examples. 

The key to the algorithm’s efficiency is the following 
recursive representation for sets of hypotheses. Let S be 
an input stream we want to identify. A hypothesis for S 
has a type, a confirmed length (equal to the number of 
elements of S with which the hypothesis has agreed so 
far), and one of the following formats: 

initial-value format: the hypothesis has the form 
(SI I H), where s1 is equal to the atomic head of 
the stream and H is the name of an induction space 
(defined below) for the set of possible tail streams. 
functional format: the hypothesis has the form 
f(a1,. . . , Hk), where f is an operation of arity 
k 2 0 and the Hj are the names of induction spaces. 
equality format: the hypothesis is simply U, the 
name of an induction space. 
unknown format: This is a stream variable whose 
confirmed length is always zero. It is a placeholder 
representing a stream whose name is assigned but 
whose first element has not yet been received. We 
denote this hypothesis by the symbol 0. 

One hypothesis has exactly one of these formats; but for 
a stream there may be several hypotheses with different 
formats. An indwction space (or space) is a collection 
of heteromorphic hypotheses for the same stream. An 
induction space shares the same name, type, and con- 
firmed length with the stream it represents. In addition 
it is assigned a parent induction space. 

The algorithm receives the sequence (SI, s2,. . .) of val- 
ues of a stream S and incrementally constructs an in- 
duction space of consistent descriptions of S. The algo- 
rithm also calls upon an external halting criterion that 
determines when to stop and declare success. 

Hypotheses for S are developed in the induction space 
called MAIN-SPACE, initially consisting of only 0. In 
order to ensure that only proper descriptions occur 
as hypotheses, the algorithm assigns a relative delay 
A(S, T) to each stream T named in the induction space 
S or in any of its subspaces, in accordance with Defini- 
tion 3. Finally, this algorithm assumes that the elements 
in the input stream are presented without any errors. 

The output is an induction space of hypotheses con- 
sistent with the input stream, from which elementary 
descriptions may be extracted. 

The Extrapolation Algorithm: 

1. Initialize: MAIN-SPACE := (0). The confirmed 
length is zero and the name of the space is that of 
the input stream (here: S). Its relative delay is 1. 

2. For i := 1,2,3. .  ., until the termination condition is 
true: Let si be the next input value. Set MAIN- 
SPA C E  := EX TEND( M A  IN-SPA CE, si, i) and in- 
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crement the confirmed length of MAIN-SPACE by 
one. 

3. Output MAIN-SPACE. 

The EXTEND Routines. Let H be a space repre- 
senting a stream, s an input value, and i 2 1. The 
procedure EXTEND(H,  s, i) is: 

For each H E H, H : = ( H  - { H } ) U  
EXTEND-HYP(H,  S, i, H). 

EXTEND replaces each hypothesis H in the space H by 
the set (perhaps empty) of all hypotheses that extend 
H to be consistent with the new value s. 

The routine EXTEND-HYP(H,  s ,  i ,  31) is defined by 
cases on the form of H. For each possible form of H ,  
it either discards H (if it is inconsistent with the next 
value s) or replaces it by all its extensions, obtained 
by recursively calling EXTEND for each sub-hypothesis 
that is part of H .  To simplify the presentation we as- 
sume that the type is freely generated; for general types 
the algorithm is somewhat more complicated. (See dis- 
cussion below.) 

Case: H is 0. . 
Return the following set of hypotheses, each with a 
confirmed length of one: 
- The initial-value stream (s I X’), if s is an 

atom. The tailstream, represented by the new 
induction space HI, is assigned a fresh name, a 
confirmed length of zero, and a relative delay 
one greater than that of H; it is initialized to 
contain only the hypothesis 0. 

- The name of every space U such that: (1) u1 = 
s, (2) the relative delay of U is less than that 
of H, and (3) U is in the parent hierarchy of 
H. 

- The functional hypothesis f ( X 1 ,  . . . , Xk), k 2 
0, provided that3 s = f(q ,..., x k ) ,  f E F, 
s # zj for 1 5 i 5 k .  Each H j  is a new space 
initialized to contain only 0 and immediately 
extended by calling E X T E N D ( X j ,  x j ,  1). 7-l is 
made the parent space of each 3cj . The relative 
delay of each Hj is equal to that of 3c. 

Case: H is an initial-value hypothesis. 
Let H = (a I HI); return the space {(a I 
EXTEND(7i , 2, i - I))}, or the empty space if this 
call to EXTEND returns the empty space. Increase 
the confirmed length of H by one. 
(Case: H = U, another induction space) 
If x = ui, return { H }  with a confirmed length of i ;  
otherwise, return the empty set. 
(Case: H is a functional hypothesis) 
Let H = f ( H 1 ,  ..., &), k 2 0. If there exist, no 
values 21 ,... Xk such that s = f ( z 1 , .  .., r k )  and 

31f the type is not freely generated, there may be rriany 
such hypotheses. 



s # ti (for any i), return the empty set. Else let 
s = f ( t 1 , .  . . , zk); return, with a confirmed length 
of i, the hypothesis f ( E X T E N D ( H 1 , z 1 ,  i), . . ., 
EXTEND(%, a, i). 

Analysis 

We summarize some results of our analysis. For sim- 
plicity let us continue limiting the discussion to freely- 
generated types. 

Unlike most algorithms in computational learning the- 
ory, the extrapolation algorithm is sufficiently complex 
that a formal correctness proof is useful. Correctness 
means that, after receiving n input values, the main 
space contains only hypotheses consistent with the ex- 
amples (soundness), and that if H is a hypothesis con- 
sistent with the input examples, H or an equivalent is 
represented in the main space (completeness). 

We adopt the notation z[i..j] for the subsequence 
ti ,..., tj of values from the stream X. If j < i, it 
denotes the empty sequence. 

The following definition makes precise what we mean 
when we say that an elementary description is "in" or 
'part of" an induction space. This is needed because 
induction spaces are not merely sets of descriptions. 

Definition 9 Let S be an induction space, and let D 
be a proper elementary definition of a stream SI, con- 
taining definitions for the symbols S I ,  SZ, . . . , s,. We 
say that D is part of S when there is an injection u m a p  
ping each symbol Si into the spaces named in S such 
that a(&) = S and, for 1 5 i 5 n, 

0 If Si = (v  I Sj), the hypothesis ( v  I 7) is one of the 

0 If Si = f (. . . , Sj, . . .), the hypothesis f(. . . , Tj, . . .) 

0 If Si = a (a constant), then the constant hypothesis 

0 If Si = Sj (an equality reference), the equality hy- 

An important detail is that, if f ( H ~ , % z , .  . .) is one of 
the hypotheses in a space S ,  and H1 is part of the space 
8 1 ,  and HZ is part of the space 'Hz, etc., then the de- 
scription S = f ( H 1 ,  H a .  . .) (followed by descriptions of 
H I ,  H z ,  and any other substreams) is a valid hypoth- 
esis. In other words, we may mix and match hypothe- 
ses freely from the spaces Hi without having to worry 
whether the combination is a valid elementary descrip 
tion. This is a result of the context-free property of 
elementary definitions: nothing in the block defining 
H1 depends on, or refers to, any symbol in the block 
defining H2 or other substream named in the functional 
hypothesis. We can build this observation into 

Lemma 10 If a description D is part of the induction 
space S ,  then D is a proper elementary description. 

hypotheses in the space .(Si), and u(Sj) = 7. 

is in u(Si), and for each j, u(Sj) = 7j. 

a is in the space .(Si). 

pothesis u(Sj) is in the set .(Si). 

Definition 11 Let Z be an induction space, and let 
z[l..N] be the first N values of a stream X (for N 2 
0). We shall call Z consistent with z[l..N] if N = 0 
and Z = {a}, or if N > 0 and every hypothesis in 
Z is consistent with z[l..N]. A hypothesis H in Z is 
consistent with 4 1 . 4  if: 

0 H = (21 I H) and H is consistent with z[2..N]; 

0 H = U (an equality reference), and for all 1 5 i 5 

0 H = a (a constant stream), and for all 1 5 i 5 N ,  

N ,  ti = ui; 

xi = a; 

and for all j, Hj is consistent with xj[l..N]. 
H = f( . . . ,Hj,- .-) ,  z[l..N]= f (  ...,zj[I..N],...), 

Lemma 12 (SOUNDNESS) Let S be a stream whose el- 
ements are presented in sequence to the extrapolation 
algorithm. For all N 2 0 ,  after processing the N'th 
element, MAIN-SPACE is consistent with s[l..N]. 

The proof is essentially an induction on the inductive 
hypothesis that, if every H in a space H is consistent 
with the stream' values z[ i . .N - 11, then every H' in 
EXTEND(%, ZN, N - i + 1) is consistent with z[i..~].B 

The idea behind the completeness argument is that, af- 
ter the first k values of an input stream S have been 
presented, every consistent hypothesis with delay k or 
less, or some equivalent, is in the induction space for S. 

Definition 13 Let S be an elementary stream descrip- 
tion with delay D. The r-approximation S(T) is defined 
for T 2 0 as follows: 

1. If r = 0, S(T) = 0 (the unknown hypothesis); 

2. If r 2 D, S(r )  = S; 

3. I f O < r < D a n d  

3.1 S = (v  I T), then S(r )  = (v I T(r - 1)). 
3.2 S = f(T1, ..., Tk), then S(r)  = 

f (Tl(r)  ,..., Tk(r)). (Note: if k = 0, trhen 
D = 1, so preceding cases apply.) 

3.3 S = U ,  then S(r)  = U ( r  + A(U, S)). 

Example: The 2-approximation to the description 

s1 = (1 I SZ) 
sz = si +s3 

s: = s1 
s3 = (1 I Si) 
s; = sz 

is &(2) = (1 I S2(1)), where Sz(1) = Sf(1) + &(1). 
S:(l) = S l ( 2 )  since A(&, S i )  = 1. &(1) = (1  I Sh(O)), 
and Si(0) = 0. These are the hypotheses corresponding 
to the definition of S1 as they exist in the induction 
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space after the algorithm has processed the first two 
values of SI .  After three values, SI(3) = S1 since the 
delay of SI is 3. 

Lemma 14 (COMPLETENESS) Let be a stream in 
ES. For all N 3 0, after the extrapolation algo- 
rithm has obtained and processed inputs s[l..N], the N- 
approximation to every description of S is part of the 
MAIN-SPACE * 

The proof is an induction on the confirmed length of 
the induction space, based on the following inductive 
hypothesis: If Z is a space for a stream X with con- 
firmed length n and H ( n )  is part of Z, then H ( n  + 1) 
is part of EXTEND(Z, z,,+l, n + 1). Since Cl is the 0- 
approximation to every description of S, and for each 
input value the algorithm extends each approximation 
by one, the result follows. I 
Theorem 15 (CORRECTNESS) Let S E ES(k) be pre- 
sented to  the sequence extrapolation algorithm. There 
exists an integer m 2 k such that after the first m values 
of S have been obtained and processed by  the algorithm, 
the set of hypotheses with delay at most k that are part 
of MAIN-SPACE is semantically equivalent t o  the set of 
elementary descriptions of S .  

PROOF: We may verify that only proper hypotheses are 
introduced into the MAIN-SPACE by the algorithm. 
By Lemma 10 any hypothesis may be selected from any 
induction space to yield a syntactically valid stream de- 
scription. Hence every hypothesis that is part of the 
MAIN-SPACE can be turned into an elementary de- 
scription. The Soundness Lemma ensures that every 
description with delay < k will eventually be eliminated, 
since such descriptions are necessarily inconsistent with 
S. For the same reason every hypothesis with delay 
k that does not describe S will eventually be elimi- 
nated. The Completeness Lemma says that every k- 
approximation to a description of S is part of the space. 
Among these are all descriptions with with delay 1, since 
such descriptions are their own k-approximations. Since 
there are only finitely man hypotheses with delay k or 

For a freely-generated type, extracting from an element 
z = f ( z1 , .  . . , zj) its unique functional components zi 
is a polynomial-time operation for most types. When it 
is, we can show: 

Theorem 16 For the family ES(k) over a freely gen- 
erated type, the algorithm processes input examples in 
time bounded by a polynomial in the total site of the 
examples and O(2”). 

And in view of the sample-size result, we have: 

Corollary 17 The family ES(2) over pairs is learnable 
in time polynomial in the size of the first m = h(s1) + 3 
examples. 

less, the theorem follows. P 

Non-freely Generated Types. 

The extrapolation algorithm breaks input values si into 
functional components Sj  = f(sjl,. . . , s i r )  in order to 
find functio heses. When data types are not 
freely gener re may be more than one way to 
do so-e.g., the integer 4 can be written 1 + 3 or 2 + 2 
or 3 + 1. In such cases the algorithm can be viewed as 
non-deterministic: if an external oracle were available to 
tell it which functional form A + B was the “right” one, 
the algorithm would require no modification. Lacking 
such an oracle, however, the algorithm must consider all 
possible constructions. 

Our approach is retain the single functional hypothe- 
sis f(. . . , H i , .  . .) but replace each of the spaces Hi by 
a tree of spaces representing the ways of constructing 
the example. Consider the integer stream (3,4,. . .), for 
example. These first two values actually represent six 
possible pairs of examples to a functional form like A+ B: 
For the left halfstream A = ( 0 1 ,  0 2 , .  . .), a1 could be 1 
or 2 and 02 could be 1, 2, or 3; and for B = ( b l ,  bz ,  . . .), 
the corresponding values of bl would be 2 or 1 and, for 
bz ,  3, 2, or 1. Thus instead of the single hypothesis of 
the form A + B, we must maintain six. Not all of these 
hypotheses will remain consistent with the subsequent 
examples. 

We cannot give the full algorithm here, but the main 
point is that when the data type is not freely generated, 
the same algorithm applies with some additional book- 
keeping. Naturally, however, the number of hypotheses 
grows much more rapidly than it does for freely gener- 
ated types. Unless the type has bounded multiplicity- 
i.e., for every element there is a bound on the number 
of ways it can be factored into components by the basic 
operations-the extrapolation algorithm requires space 
superpolynomial in the size of the input values, in the 
worst case. 

Naturally, this does not mean that extrapolating ele- 
mentary streams of naturals, strings, and other non- 
freely generated types is an inherently hard problem: 
some other algorithm, presumably one less general than 
ours, may well solve the extrapolation problem effi- 
ciently. 

Concluding Observations 

The main result of this paper is a family of st,reams 
and types for which there is a unified algorithm for ex- 
trapolating sequences. We have shown how sequence 
extrapolation can be treated generally as a problem of 
learning a stream description. 

Our algorithm is not efficient for types that are neither 
freely generated nor bounded in the number of factor- 
izations of any element. Note that it does not take into 
account any of the theory of the type, i.e., the charac- 
terization of its congruence classes-to do so would be 
type-specific and hence beyond the scope our present, 
objectives. Observing, however, that polynomials of or- 
der k are learnable efficiently with only k + 1 valites, we 
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expect that there are interesting cases where incorporat- 
ing the theory of a type into our algorithm will lead to an 
efficient extrapolation algorithm for that type. Relating 
extrapolation to the problem of solving equations over 
an algebraic data type may be an approach to deriving 
true lower-bound complexity results on the extrapola- 
tion problem for specific types. 

Constructive types are a reasonably generous family, 
but streams over non-constructive types ought to be 
learnable as well. For example, the family of streams 
that are polynomial functions with integer coefficients 
of the stream N= (1,2,3, ...) is learnable, but such 
streams cannot be directly represented as elementary 
streams over a constructive type because subtraction 
renders the data type non-constructive. As currently 
written, the extrapolation algorithm can get into infi- 
nite loops for non-constructive types. 

Sample-size analysis offers a number of challenging 
problems. Without the powerful statistical convergence 
theorems that have been so effective in statistical learn- 
ing models, we resort to arguing by cases; the result- 
ing proofs quickly become complex and unappetizing. 
In essence this means we lack any deep understanding 
about why so many hypotheses are eliminated by so few 
examples. 

The elementary description language itself, while ex- 
pressive enough for many purpow, is still rather weak. 
We have limited initial values to atoms in this paper 
only in order to simplify the reasoning about the al- 
gorithm; our implementation does not impose this re- 
quirement. By contrast, the block-structure require- 
ment that equality forms may refer back only to their 
parent streams is necessary for the efficiency of the ex- 
trapolation algorithm and of the algorithm for selecting 
meaningful descriptions from the final induction space. 
In the course of our research we explored a number of 
other stream representations that turn out to be equiv- 
alent in expressive power to ES, and settled on the one 
defined in this paper because it yields an efficient algw 
rithm. Still, we see considerable interest in discovering 
other stream representations with efficient learning al- 
gorit hms. 

Everyone has doubtless experienced the sudden increase 
in confidence that accompanies discovering a simple rule 
to account for a lengthy series of observations. Con- 
fidence continues to increase rapidly with the number 
of successful predictions, and at some point confidence 
in the hypothesis may even exceed one's confidence in 
the data. As part of this work we developed a Bayesian 
model of confidence [A that applies, not just to sequence 
extrapolation, but to a variety of predictive learning 
problems. This model leads to an algorithm for se- 
quence extrapolation in the presence of noisy examples. 
An interesting property of extrapolation from unreliable 
data is that, unlike statistical learning from independent 
random events, errors early in the sequence are poten- 
tially more significant than errors later on. 

Theoretical problems are entertaining, but our motiva- 
tion in conducting this work is primarily a practical one, 
and we have implemented the extrapolation algorithm 
as a first step in exploring several applications. One of 
these applications is inductive programming, the task 
of formulating a general concept (function or relation) 
from examples and counterexamples. An area of active 
research, inductive programming has been applied to 
problems in biology, structural engineering, and qualita- 
tive modeling, with modest success. Current algorithms 
for inductive programming are based on finding minimal 
generalizations of the examples, but these methods re- 
quire an enormous number of examples and must search 
through a potentially huge space of possible generaliza- 
tions. At the same time, they disregard much of the 
structure available in the examples, structure t,hat is 
evident if the examples are arranged in order of com- 
plexity or size. In many cases that we have studied 
the number of examples required decreases by two or 
three orders of magnitude when sequence extrapolation 
is combined with generalization. Sequence extrapola- 
tion also suggests some new approaches to fold-unfold 
program transformations and to task scheduling in par- 
allel programming on scalable architectures. 
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Appendix: Outline of the Proof of 
Theorem 8 

Let S = (81, s2,. . .) be an ES(2)  stream over pairs. We 
argue first that the description of S is determined up 
to equivalence by its first rn = h(s1) + 3 values. Then 
we exhibit streams for which this number of values is 
necessary. 

Following is a useful lemma whose proof is not difficult: 
Let S be a stream of delay at most k; if the first k values 
of S are all equal, then S is a constant stream. 

The proof of the theorem is by induction on the height 
h(s1) of the first example. For h = 0, assume that 
the first element SI is an atom a. We claim that 3 
examples suffice to determine the definition of S up to 
equivalence-i.e., if there is a stream T of delay at most 
2 whose first 3 values are the same as those of S, then 
any definition for S is equally a definition for T. 
Suppose s1 = sa. Then by the above lemma S is a 
constant stream and its definition is clearly determined 
up to equivalence. So assume SI # 4. The form of the 
definition is 

S = ( . ] A )  
A = ... 

where the definition of A depends on 52.  

Suppose s2 is an atom b (possibly equal to a). Then 
the description of A is A = b. (If b = a, an equivalent 
description is S = a.) 

Suppose s2 is the pair (a,b), where a # b. Then 
the description of A must be a %oris" functional form 
A = ( B , C )  where the description of C is necessarily 
C = b. The description of B is either B = S or B = a- 
both descriptions are consistent with the first two ex- 
amples. The third example will determine which de- 
scription of B is correct: if s3 is ((a, b), b), then B = s, 
but if s3 is (a ,b) ,  then B = a. Hence three examples of 
the sequence S suffice when s2 is the pair (a, b). More 
generally, we can extend this argument by induction on 
the structure of s2 to show that the description of A is 
determined by 52 and s3. 

Before continuing, let us introduce some notation and 
terminology. If a stream A is described by the functional 
form A = (U,V),  the components of A are A, U, V, 

and the components of U and V. Such a form can be 
visualized as a description tree whose root is labeled A 
and whose left and right children are labeled U and V, 
respectively. If U is in turn a functional form, it, too, 

U is an atom, an equality form, or 
, then it is a leaf of the tree. In 

Figure 3, part of a description of a stream S is shown 
schematically in tree form. The leaf 2 is an initial- 
value form (a I A'), where the stream A' in turn yields 
a description tree. Since the delay of S is at  most two, 
the leaves of A' must be either atoms or backreferences 
to parents of Z in the description tree for S. We refer 
to A' and its components as delayed components of 2 
(and the parents of 2). We will adopt the convention 
of priming the names of delayed components. Also, we 
continue the convention of denoting the examples of a 
stream X by 21, 2 2 ,  etc. Note that if A' is a delayed 

. component of S, ai (the first instance of A') occurs as 
part of s2, and if we have m examples of S, we have 
only m - 1 examples of A'. 

Inductive Step. We assume that h(s1) + 3 examples 
suffice to identify up to equivalence all delay 2 streams 
such that h(s1) < h. 

Let S be a stream of delay 2 such that h(s1) = h. Let 
m = h + 3. Write SI = ( c Y I , ~ ~ ) ,  where either h ( q )  = 
h-  1 and/or h(&) = h-  1. The description of S is thus 
of the form S = (U, V), where U and V may likewise be 
functional forms. 

Let us consider the description of U. The description is 
a functional form U = (W, X) iff CUI is a pair. In fact, 
the description of S can be represented as a component 
tree terminating in a non-functional "leaf" stream 2 
for each atom a in SI. These non-functional forms are 
either initial-value forms 2 = (u I A') or const,ant, forms, 
2 = a. 

Consider any leaf 2 corresponding to an atom u in SI. 
Let 22 be the pair (or atom) in s2 in the position cor- 
responding to this a. If the expression SI does not oc- 
cur as part of 2 2 ,  then the description of the stream 2 
(including its tailstream) cannot contain any backrefer- 
ences to S. Moreover, if this is true for all leaf streams 
in the description of U-Le., that they do not contain 
any backreferences to S because the corresponding value 
in s2 does not contain any occurrences of sl-then U 
is a stream of delay 2 whose first value has height less 
than h and whose description depends only upon U and 
its substreams. Hence by the inductive hypothesis the 
description of U is determined by only m - 1 examples. 

In particular, if there exists a description of U without 
backreferences to S consistent with all m examples, then 
that description is determined up to equivalence I)y the 
first m - 1 examples 

Therefore let us assume that there is at  least one leaf 
component 2 of U whose first value 21 is an atorn (I  

and whose second value 22 contains within it si. The 
description of 2 must be 2 = (a I A'), followed t)y the 
description of A'. In general, the description of A' will 
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Figure 3: Stream with h = 2 requiring 5 examples. 

Z X 

Z= <a1 A'> 

A 
U' V' 

Figure 2: Structure of S. 

be a "tree" of functional forms, but we know that at  
least one component B' of A' (or perhaps A' itself) sat- 
isfies b', = SI. Thus B' = S is a hypothetical description 
of B' consistent with s1 and SZ; B' = (Ut, V') may be 
another hypothesis, where U' and V' are the names for 
the left and right components of B, respectively. Ac- 
cording to our assumptions, u: = ul and vi  = VI. 

In m examples of S there are m - 1 examples of the 
delayed component B' . If these m - 1 examples are suf- 
ficient to eliminate either of the two hypotheses for B', 
then we have no problem. Nor do we have a problem 
if these hypotheses are equivalent and therefore consis- 
tent with m- 1 examples. Let us consider, however, the 
possibility that both hypotheses for B' remain consis- 
tent with m - 1 examples of B', but that later one or 
the other hypothesis turns out to be inconsistent with 
an example of B'. 
In particular, if, for some i, 1 5 i 5 m - 1, either 
u: # ui or v: # vi, then the hypothesis S for B' will be 
eliminated because it is inconsistent with the value si+l. 
If, moreover, S should be eliminated as a hypothesis for 
all delayed components of U like B', then the only viable 
hypotheses for U will depend entirely on substreams of 

U, with no backreferences to S. In this case, by the 
inductive hypothesis, these rn - 1 examples suffice to 
determine U up to equivalence. The only remaining 
case, therefore, is where u: = ui and vi = vi for all 
i 5 m - 1, for some delayed components of U like B'. 
Thus we need to show that if, after m examples of S, 
we still have two consistent hypotheses for B', then they 
must be equivalent. 

The consistent hypotheses for U without backreferences 
to S are determined uniquely up to equivalence by m - 1 
examples. Part of such a hypothesis is the description 
B' = (U',V'). Since U' = U is consistent with the 
examples, any hypothesis for U' is equivalent to this one. 
Note that V' = V is not a possible hypothesis, since V 
is not in the parent hierarchy of VI. However, it can be 
argued that V' must be equivalent to V. Thus the two 
hypotheses B' = S and B' = (U',V') are equivalent. 
Having shown that the description of U is determined 
(up to equivalence) by m values, we can apply the same 
argument to V by symmetry. This completes the proof 
that streams of delay 2 are m = h + 3-distinguishable. 

To show that they are exactly h(sl)+ 3-distinguishable, 
we construct for arbitrary h a sequence SI, . . . , sm-l 
such that there are at  least two inequivalent hypotheses 
consistent with all m - 1 examples. 

The construction, while not difficult, is too lengthy to 
give here. We provide as examples the construction for 
h(s1) = 0 and h(s1) = 2. 

For h(s1) = 0: The stream 

s = (a ,  (a ,  a), . . .) 
has four distinct consistent descriptions: 

S = ( . / A )  
A = ( B , C )  
B = S o r a  
C = S o r a  

Hence two examples do not suffice to determine its de- 
scription. 

For h(s1) = 2: The first 4 examples of S are in Figure 
3 above. One can verify that S has four distinct consis- 
tent descriptions. Hence four examples do not suffice to 
determine its description. 

10 


